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A Tight-Binding Method for the Evaluation of the 
Total Energy of Large Systems ~ 

M. J. Mehl, :~  D. A. Papaconstantopoulos,-" and R. E. Cohen 4 

A new tight-binding total energy method, suitable for the description of atomic 
systems containing hundreds of atoms, is described. The method is applied to 
the calculation of the vacancy-formation energy in the noble metals and several 
transitio,1 metals. The method agrees reasonably well with experiment, even 
though no information abottt the vacancies was used in constructing the tight- 
binding Hamiltonian. 
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1. INTRODUCTION 

The development of high-speed computers and fast algorithms for solving 
differential equations has allowed first-principles electronic structt, re theory 
to make tremendous strides in the past decade. Given a crystal structure, 
it is now possible to calculate accurately total energies of atoms, molecules, 
clusters, and solids. The resulting energy surfaces can be used to predict 
mechanical properties such as the equilibrium density [ 1 ], elastic constants 
[2 ] ,  vacancy-formation energies [ 3 - 7 ] ,  and phonon frequencies I-8]. 
Computations involving several crystal structures provide input for the 
construction of structural phase diagrams [9] .  

Given these successes, it is natural to attempt to use first-principles 
methods to understand the structure of real materials, including the proper- 
ties of surfaces, defects, stacking faults, complex alloys, and amorphous 
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solids. While these computations must necessarily consider the lattice to be 
static, they could also be used as input for molecular dynamics simulations 
to study liquids and phase transitions and to perform quantum path integral 
simulations. These calculations will require structural information for 
systems containing thousands of atoms. This is beyond the grasp of current 
first-principles methods, since the time to perform an electronic structure 
calculation is propo,'tional to the cube of the number of atoms in the system, 
giving rise to the so-called "O[N~-] ' ' problem. While various techniques 
[ 10, 11 ] have been proposed to avoid this problem, none is fully developed, 
nor have any been shown to work for metals and intermetallic alloys, the 
area of our principal interest. 

What is needed, then, is an accurate approximate method for obtaining 
structural energies in many-atom systems. Several methods have been tried. 
One of the most successful is the embedded atom method (EAMJ [ 12, 13~], 
which uses first-principles total energies and experimental data to fit 
physically reasonable embedding and pair-potential functions. These func- 
tions can then be used to calculate structural properties in large systems. 
Tile EAM has been used successfully in many systems: however, it must be 
modified to handle systems with covalency, such as bcc metals. 

Another approach, which we explore here, is to use the electronic 
structure information provided by the first-principles calculations, in con- 
junction with the total energies, to provide an approximation of the 
quantum mechanical nature of the electronic structure. We use the frame- 
work of the tight-binding formulation of quantum mechanics to develop a 
method by which first-principles calculations can be used to determine a set 
of tight-binding parameters which can be used to construct a Hamiltonian 
Ibr extended systems. The method provides the total energy and electronic 
structure of the extended system. 

The method is described briefly in Section 2. We then apply it to a 
large-scale problem, the calculation of the vacancy lbrmation energy, in 
Section 3. We make some concluding remarks in Section 4. 

2. THE TIGHT-BINDING TOTAL ENERGY METHOD 

The tight-binding method used here has been discussed elsewhere 
[ 14, 15]. We will use this section to present a brief summary of the model. 
Standard tight-binding theory [ 16] evaluates the electronic structure using 
a basis of localized orbitals centered on each atom. These matrix elements 
can be used to form a Hamiltonian matrix H which is sparse for large 
systems, i.e., most matrix elements are zero. If the basis functions are non- 
orthogonal, there is a corresponding overlap matrix S which must also be 
constructed. Tile overlap matrix is also sparse for large systems. The 
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electronic structure problem then reduces to the standard problem of 
solving the generalized eigenvalue problem 

H I l l )  =~:,,S In) (1) 

for eigenvalues t:,, and eigenstates In). Note that the tight-binding method 
is much faster than the full-potential linearized augmented plane wave 
(LAPW) method [ 17, 18] or the muffin-tin augmented plane wave (APW) 
method [ 1 ]. These more accurate methods require on the order of 50-100 
basis functions per atom, while a tight-binding calculation which includes 
s, p, and d orbitals requires only 9 basis functions per atom. Using the N ~ 
rule to approximate the computational difficulty, we see that tight-binding 
methods can be 1000 times faster than first-principles electronic structure 
methods. Sparse matrix techniques will give tight-binding methods an even 
larger edge. 

Parametrized tight-binding methods [19] use the tight-binding 
formalism as a framework for approximating the electronic structure. The 
nonzero elements of H and S are considered to be parameters, and are fit 
to reproduce the electronic structure from first-principles calculations of 
simpler systems [20-23].  Consider the Kohn-Sham [24] formulation of 
density functional theory [25]. One writes the total energy of an electronic 
system in the form 

E[n(r ) ]  = ~ ei+ F[n(r) ]  (2) 

where n(r) is the density of electrons, ~:, are the eigenvalues of the single- 
particle Schr6dinger equation, and F in( r ) ]  is a functional of the density 
which includes kinetic, Coulomb, and exchange-correlation effects which 
are not included in the eigenvalue sum. Note that the summation is only 
over the occupied states of the Hamiltonian. In tight-binding calculations, 
the parameters are chosen to fit the ~:, as determined from electronic struc- 
ture calculations. The remaining term, F in( r ) ] ,  is approximated by a sum 
of pairwise potential functions connecting the atoms in the solid. 

While reasonably successful, this approach has some conceptual dil L 
ficulties. Consider a shift of the eigenenergies by an amount I ' ,  (equivalent 
to a uniform shift of the potential energy), which forces F to change by an 
amount N~ I,',, where N¢ is the number of electrons in the system. The pair 
potentials used to approximate F can be attractive or repulsive, depending 
on the algorithm used to choose I ' . .  Fortunately, the freedom to choose I'o 
allows us to eliminate the pair potentials completely. We define a set of 
shifted eigenvalues, 

t:~ = ~:, + F[n(r)] /N~ (3) 



506 Mehl. Papaconstantopoulos, and Cohen 

These are obviously independent of the choice of I/"o. The total energy is 
thus 

E[n( r ) ]  = ~ el (4) 
oc t :  

We now sketch the development of our tight-binding parametriza- 
tion. First-principles total energy calculations are performed for simple 
monatomic structures. We use either the full-potential linearized augmented 
plane wave (LAPW) [17, 18] or the muffin-tin potential augmented plane 
wave (APW) [1]  method. In the case of the metals discussed here we used 
only 3-5 structures in each of the fcc and bcc lattices. The electronic band 
structures and total energies were tabulated as a function of volume, and 
used to calculate the shifted band energies e i . 

The hopping terms in the Hamiltonian and overlap matrices are 
assumed to have the form 

Pi ( r )  = (ai + h ,r) exp[ - c~r] f ( r )  (5) 

where r is the distance between atoms and f ( r )  = { exp[ (r - ro)//] + 1 } - ~ is 
a universal cutoff function which is chosen to allow all the functions to 
vanish smoothly at large r. Typically we take ro = 16.5 Bohr and /=0 .5  
Bohr. We restrict ourselves to / = s, p, and d orbitals, whence there are ten 
hopping terms P, per atom for each Hamiltonian and overlap matrix. 

On-site terms are controlled by the "density" of neighboring atoms: 

P~. = Z exp[ - d ~ r ]  ./(,') 
i 

6) 

where d~: depends on the atom types (atom j has type ]). The on-site 
parameters, which set the energy scale, are fitted to a finite-strain 
approximation polynomial: 

DI~ = t:l~ + g/~P~ 3 + he, p~. 3 (7) 

The 70 parameters needed in this method are determined to give the best 
simultaneous fit to the electronic structure and total energies calculated 
from the input first-principle calculations. Generally the RMS error of the 
occupied bands is on the order of 5 mRy (1 R y =  13.6 eV), and the RMS 
error of the energies is on the order of 0.5 mRy. 

We have tested this method by constructing parameters for several 
transition and noble metals, then using the parametrization to determine 
the energy/volume relationships for several phases of each metal, the elastic 
constants, and the phonon spectra [14, 15]. As discussed above, these 
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Fig. I. Comparison of  Tight-Binding and LAPW energy/volume predictions 
for several phases of  Copper. The lines denote the tight-binding calculations: fcc 
(solid). bcc (dashed), hcp (dash-dot), and simple cubic (dotted). Marked points 
indicate first-principles full-potential LAPW calculations. The "'×" represent the 
fcc and bcc volumes used in fitting the tight-binding parameters, while fcc, bcc, 
and hcp points not used in the fit are marked by "A."  The energies for the 
LAPW simple cubic phase are at approximately 0.040 Ry and are not shown on 
this graph. 

calculations are about I000 times faster than the corresponding first- 
principles calculations [2, 8], but are of comparable accuracy. As an 
exaple, in Fig. 1 we compare full-potential LAPW calculations with the 
tight-binding results for the fcc, bcc, hcp, and simple cubic phases of cop- 
per. Note that our tight-binding parametrization correctly places the hcp 
and sc phases on the diagram without fitting them. 

3. VACANCY-FORMATION ENERGY 

Point defects in metals are of interest in materials physics. In particular, 
the interaction of point defects and dislocations determines the ductility of 
a metal. Unfortunately, because of the long-range interaction between point 
defects, it is difficult to describe them accurately using exact first-principles 
methods. For example, in a study of vacancy formation in aluminum [3 ] ,  
it was found that a 27-atom supercell did not adequately isolate the vacancy, 
while computations involving larger unit cells are difficult to fit on current 
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computers. Calculation of vacancy-formation energies by the tight-binding 
method is rather easy, however. Furthermore, since many experimental 
vacancy-formation energies are known [26],  we can use these calculations 
to test the accuracy of the tight-binding results for many-atom systems. 

We use the supercell method to obtain the vacancy-formation energy. 
For example, to calculate the vacancy-formation energy in silver, we con- 
struct an N-atom supercell of the fcc lattice, removing one atom from the 
supercell to form the vacancy. Since the supercells themselves form a 
periodic lattice, there is an interaction between the vacancies which vanishes 
in the limit of large N. The energy required to form the vacancy in the 
N-atom supercell is given by 

N - I  
E,,: ...... y (N)= E ( N -  1, 1 ) - - - - - ~ -  E(N, 0) (8) 

where E ( N - M ,  M) is the total energy of an N-site supercell with M 
vacancies. The supercell vacancy-formation energy E,. . . . . .  y ( N )  approaches 
the true vacancy-formation energy in the limit of large N. 

We calculated the vacancy-formation energy for Cu, Ag, Au, Nb, and 
Mo, using supercells of up to 216 atoms with the tight-binding method 
described in Section 2. In most cases the vacancy-formation energy con- 
verged at 108 atoms. We first did the calculations without allowing the 
atoms near the vacancy to relax, and then allowing the vacancies' first and 
second nearest neighbors to relax to the minimum-energy structure. The 
resulting vacancy-lbrmation energies are shown in Table I, along with the 
experimental results [26]. There is reasonable agreement with experiment, 
especially considering the large discrepancy between different types of 
experimental measurements. Also, we note that the tight-binding method 

Table 1. Vacancy-Formation Energy as Calculated by the Tight-Binding Method 
Described in the Text and Compared to Experiment 

Vacancy-formation energy {eV} 

Tight-binding 

Element Fixed Relaxed Experiment :~ 

Cu 1.29 1.18 1.28 1.42 
Ag 1.31 1.24 1.1 I-I.31 
Au 1.24 I. 12 (I.89 
Nb 2.84 2.82 2.[)7-2.65 
Mo 2.26 2.15 3.1"]-3.6 
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correctly predicts the qualitative difference between the noble fcc metals, 
where the vacancy-formation energy is on the order of I eV, and the bcc 
transition metals, where vacancies require over 2 eV to form. 

4. SUMMARY 

We have presented a brief discussion of a new method for obtaining 
tight-binding parametrizations for metals, and shown how the method can 
be applied to large unit cells by calculating the vacancy-formation energies 
for several metals. In the future we will extend the tight-binding method to 
include binary interactions so that a wide variety of intermetallic alloys can 
be considered. 
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